11,314 research outputs found

    A comparative study of functional assays for tissue factor pathway inhibitor using normal plasma and clinical samples

    Get PDF
    Tissue factor pathway inhibitor (TFPI) is a Kunitz-type inhibitor that regulates the initiation of tissue factor-mediated coagulation. Recent reports in the literature have described variable results using different methodologies for TFPI measurement. In this study, we used one clotting and two amidolytic methodologies to assess TFPI functional levels. The study groups included normal healthy donors as well as patients with acute hepatitis, diabetes, coronary artery bypass graft operations, deep vein thrombosis, and prior to and during heparin therapy. The aims were to compare the results obtained in normal plasma using different assay systems, to compare TFPI levels in a range of clinical samples, including those previously not determined using a clotting methodology, and to report TFPI levels in patient groups previously not investigated. The results clearly demonstrate poor correlation between functional TFPI values using the different methodologies, highlighting the requirement for standardization

    Sub-diffraction light propagation in fibers with anisotropic dielectric cores

    Get PDF
    We present a detailed study of light propagation in waveguides with anisotropic metamaterial cores. We demonstrate that in contrast to conventional optical fibers, our structures support free-space-like propagating modes even when the waveguide radius is much smaller than the wavelength. We develop analytical formalism to describe mode structure and propagation in strongly anisotropic systems and study the effects related to waveguide boundaries and material composition

    Direct photons in d+Au and p+p collisions

    Get PDF
    Results are presented from an ongoing analysis of direct photon production with the STAR experiment at RHIC. The direct photon measurement in d+Au collisions and the neutral pion spectrum in p+p collisions are found to be in agreement with NLO pQCD calculations.Comment: 4 pages, 3 figures, proceedings of Quark Matter 200

    Effect of polarized optical injection on the wavelength polarization switching and bistability of a 1550nm-VCSEL

    Get PDF
    We report the first experimental observation of a variety of forms of wavelength polarization switching and bistability with a 1550-nm VCSEL subject to optical injection with different input polarization angles. ©2008 IEEE

    Dual-mode lasing in a 1310-nm quantum dot distributed feedback laser induced by single-beam optical injection

    Get PDF
    Tunable dual-mode lasing is experimentally demonstrated in a 1310-nm quantum dot (QD) distributed-feedback (DFB) laser under single-beam optical injection. The wavelength spacing between the two lasing modes is controlled by injecting the external optical signal into different residual Fabry-Perot modes of the QD DFB laser. The influence of important parameters, i.e., injection strength and bias current, is also analyzed. The simple experimental configuration used to achieve tunable dual-mode lasing and the theoretically superior properties of the QD laser offer exciting prospects for the use of these devices in microwave signal generation and radio-over-fiber applications for future mobile communication networks. © 2013 AIP Publishing LLC

    The activating mutation R201C in GNAS promotes intestinal tumourigenesis in Apc(Min/+) mice through activation of Wnt and ERK1/2 MAPK pathways.

    Get PDF
    Somatically acquired, activating mutations of GNAS, the gene encoding the stimulatory G-protein Gsalpha subunit, have been identified in kidney, thyroid, pituitary, leydig cell, adrenocortical and, more recently, in colorectal tumours, suggesting that mutations such as R201C may be oncogenic in these tissues. To study the role of GNAS in intestinal tumourigenesis, we placed GNAS R201C under the control of the A33-antigen promoter (Gpa33), which is almost exclusively expressed in the intestines. The GNAS R201C mutation has been shown to result in the constitutive activation of Gsalpha and adenylate cyclase and to lead to the autonomous synthesis of cyclic adenosine monophosphate (cAMP). Gpa33(tm1(GnasR201C)Wtsi/+) mice showed significantly elevated cAMP levels and a compensatory upregulation of cAMP-specific phosphodiesterases in the intestinal epithelium. GNAS R201C alone was not sufficient to induce tumourigenesis by 12 months, but there was a significant increase in adenoma formation when Gpa33(tm1(GnasR201C)Wtsi/+) mice were bred onto an Apc(Min/+) background. GNAS R201C expression was associated with elevated expression of Wnt and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase (ERK1/2 MAPK) pathway target genes, increased phosphorylation of ERK1/2 MAPK and increased immunostaining for the proliferation marker Ki67. Furthermore, the effects of GNAS R201C on the Wnt pathway were additive to the inactivation of Apc. Our data strongly suggest that activating mutations of GNAS cooperate with inactivation of APC and are likely to contribute to colorectal tumourigenesis

    Mass Drug Administration and beyond: how can we strengthen health systems to deliver complex interventions to eliminate neglected tropical diseases?

    Get PDF
    Achieving the 2020 goals for Neglected Tropical Diseases (NTDs) requires scale-up of Mass Drug Administration (MDA) which will require long-term commitment of national and global financing partners, strengthening national capacity and, at the community level, systems to monitor and evaluate activities and impact. For some settings and diseases, MDA is not appropriate and alternative interventions are required. Operational research is necessary to identify how existing MDA networks can deliver this more complex range of interventions equitably. The final stages of the different global programmes to eliminate NTDs require eliminating foci of transmission which are likely to persist in complex and remote rural settings. Operational research is required to identify how current tools and practices might be adapted to locate and eliminate these hard-to-reach foci. Chronic disabilities caused by NTDs will persist after transmission of pathogens ceases. Development and delivery of sustainable services to reduce the NTD-related disability is an urgent public health priority. LSTM and its partners are world leaders in developing and delivering interventions to control vector-borne NTDs and malaria, particularly in hard-to-reach settings in Africa. Our experience, partnerships and research capacity allows us to serve as a hub for developing, supporting, monitoring and evaluating global programmes to eliminate NTDs
    corecore